Composite motifs integrating multiple protein structures increase sensitivity for function prediction.
نویسندگان
چکیده
The study of disease often hinges on the biological function of proteins, but determining protein function is a difficult experimental process. To minimize duplicated effort, algorithms for function prediction seek characteristics indicative of possible protein function. One approach is to identify substructural matches of geometric and chemical similarity between motifs representing known active sites and target protein structures with unknown function. In earlier work, statistically significant matches of certain effective motifs have identified functionally related active sites. Effective motifs must be carefully designed to maintain similarity to functionally related sites (sensitivity) and avoid incidental similarities to functionally unrelated protein geometry (specificity). Existing motif design techniques use the geometry of a single protein structure. Poor selection of this structure can limit motif effectiveness if the selected functional site lacks similarity to functionally related sites. To address this problem, this paper presents composite motifs, which combine structures of functionally related active sites to potentially increase sensitivity. Our experimentation compares the effectiveness of composite motifs with simple motifs designed from single protein structures. On six distinct families of functionally related proteins, leave-one-out testing showed that composite motifs had sensitivity comparable to the most sensitive of all simple motifs and specificity comparable to the average simple motif. On our data set, we observed that composite motifs simultaneously capture variations in active site conformation, diminish the problem of selecting motif structures, and enable the fusion of protein structures from diverse data sources.
منابع مشابه
Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins
Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-al...
متن کاملProtein Function Prediction by Integrating Multiple Kernels
Determining protein function constitutes an exercise in integrating information derived from several heterogeneous high-throughput experiments. To utilize the information spread across multiple sources in a combined fashion, these data sources are transformed into kernels. Several protein function prediction methods follow a two-phased approach: they first optimize the weights on individual ker...
متن کاملAutomated Construction of Structural Motifs for Predicting Functional Sites on Protein Structures
Structural genomics initiatives are beginning to rapidly generate vast numbers of protein structures. For many of the structures, functions are not yet determined and high-throughput methods for determining function are necessary. Although there has been extensive work in function prediction at the sequence level, predicting function at the structure level may provide better sensitivity and pre...
متن کاملDMP Final Report: Geometric Analysis of Multiple Protein Structures for the Design of Optimized 3D Protein Motifs
Understanding the function of proteins continues to be a fundamental problem of biology[7]. Functional annotation of proteins through biological experimentation, however, is time-consuming and expensive. Many computational methods for prediction of protein function have been developed. Some tools, such as PSI-BLAST[2], EMATRIX[13], and PROSITE[6], use sequence similarity to help predict functio...
متن کاملFLORA: A Novel Method to Predict Protein Function from Structure in Diverse Superfamilies
Predicting protein function from structure remains an active area of interest, particularly for the structural genomics initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although global structure comparison methods can be used to transfer functional annotations, the relationship between fold and function is complex, particul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational systems bioinformatics. Computational Systems Bioinformatics Conference
دوره 6 شماره
صفحات -
تاریخ انتشار 2007